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Serge CANTAT: Groups of polynomial transformations

0.1 Affine space and its automorphisms

k is a field (any field, not neccessarily algebraically closed or of characteristic 0.)

Amk is the affine space over k

(x1, x2, . . . , xm) = the standard affine coordinates

From time to time, may distinguish between affine space and points in it:

Am(S) = points with coordinates in S, where S is e.g. a subset of k, or sometimes e.g. an extension
of k

e.g. given AmQ , can look at Am(Z) ∼= Zm, or Am(C) ∼= Cm.

End(Amk ) = polynomial transformations f : Am → Am

In coordinates, defined by m polynomials: f(x1, . . . ,m ) = (f1, . . . , fm) where fi ∈ k[x1, . . . , xm];
group law is just composition of maps (f, g ∈ End(AAmk ): f ◦ g = (f1(g1, . . . , gm), . . . ).)

Aut(Amk ) = invertible elements in End(Amk )= group of automorphisms of Am defined over k

“Leitmotif”: take properties of linear group GLn k, decide if they are satisfied by Aut(Amk ).

Example 0.1. For all m, Affm(k) = affine transformations = GLm(k) n km where km = Amk acts
by transformations.

((x1, . . . , xm) 7→ L(x1, . . . , xm) + t) ⊂ Aut(Amk ).

Exercise. Aut(A1
k) = Aff1(k).

Proof. Given f ∈ Aut(A1
k), f(x1) ∈ k[x1]; f−1(x1) ∈ k[x1].

f ◦ f−1(x1) = x1.

deg(f) · deg(f−1) = 1, so deg(f) = 1, i.e. x = ax1 + b ∈ Aff1(k)

0.2 Dimension 2

Example 0.2. h

(
x1
x2

)
=

(
ax1 + p(x2)
bx2 + c

)
where p ∈ k[x2], a, b, c ∈ k, ab 6= 0
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h−1 =

(
∗x1 − p(x2)
∗x2 + ∗

)
The set of all such transformations is called the elementary subgroup

E =

{
h

(
x1
x2

)
=

(
ax1 + p(x2)
bx2 + c

)}
This is an infinite-dimensional group (we need as many parameters as are needed to describe poly-
nomials in one variable ...)

The degree of an endomorphism f(x1, . . . , xm) = (f1, . . . , fm):

Given ϕ ∈ k[x1, . . . , xm], write ϕ(x) =
∑+∞
j=0 ϕj(x) where ϕj is a homogeneous polynomial function

of degree j. Then deg(ϕ) = max{j : ϕj 6= 0}.

Example 0.3. For ϕ(x1, x2, x3) = x1+2x2x
4
3+x22+x1x3, ϕ1 = x1, ϕ2 = x22+x1x3, and ϕ5 = 2x2x

4
3,

so degϕ = 5

deg(f) = maxi=1,...,m deg(fi).

Geometric interpretation: take a generic affine hyperplane H ⊂ Amk , take a generic (affine) line
L ⊂ Amk , count number of points in f−1(H) ∩ L over k̄ the algebraic closure of k

Exercise. If h1, h2 ∈ E, then deg(h1 ◦ h2) ≤ max (deg h1,deg h2).

Two new phenomenon starting from dimension 2: group is now infinite-dimensional; degree is now
only sub-multiplicative, not multiplicative.

Theorem 0.4 (Jung, van der Kulk 1942). The group Aut(A2
k) is the free product of A = Aff2(k)

and E amalgamated along their intersection S = A ∩ E

S =

(
x1
x2

)
7→ L

(
x1
x2

)
+

(
s
t

)
where L ∈ GL2(k) is upper-triangular.

Note it is specific to dimension 2 (and hard; requires algebraic geometry) that A and E generate
Aut(A2

k).

Proof of free product with amalgamation. For every h ∈ Aut(A2
k) \ S, there exist g1, . . . , gn ∈ (A ∪

E) \ S such that h = gn ◦ · · · ◦ g1 and two consecutive gi, gi+1 are in distinct subgroups A,E. Call
this a reduced word (or composition)

To show that we have a free product with amalgamation, it suffices to show that any such reduced
word / composition is not idA2 . In fact, we will show

Proposition 0.5. The degree of a reduced word h = gn ◦ · · · ◦ g1 is deg(h) =
∏n
i=1 deg(gi).

To prove this formula: write e.g h = an · · · e3 ◦ a2 ◦ e2 ◦ a1 ◦ e1 where ai ∈ A \ S and ei ∈ E \ S.

deg ai = 1, so it suffices to show deg(h) =
∏

deg(ei).

Remark 0.6. Every element of A \ S can be written as s1 ◦ t ◦ s2 where si ∈ S and t

(
x1
x2

)
=(

x2
x1

)
. S ◦ t ◦ S = A \ S.

Hence we can write h = · · · e′3 ◦ t ◦ e′2 ◦ t ◦ e′1 where deg(e′i) = deg(ei) (since e′i is the composition of
ei with one or two affine maps.)
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Now e′1

(
x1
x2

)
=

(
a1x1 + p1(x2)
b1x2 + c1

)
∈ E \ S; deg(e′1) = deg(p1)

t ◦ e′1 =

(
b1x2 + c1

a1x1 + p1(x2)

)
=

(
P1

Q1

)
; highest degree term is a monomial in x2.

e′2(t ◦ e′1) =

(
linear + p2(Q1)

linear + ∗

)
; the leading terms are in p2(Q1) = p2(a1x1 + p1(x2)), which has

degree deg(p2) · deg(Q1) = deg(e′2) · deg(e′1).

t ◦ e′2 ◦ t ◦ e′1 =

(
P2

Q2

)
; now argue by recursion (induction?)

“When you study these things you have to do these [computations] every day.”

Theorem 0.7 (S. Lamy). The group Aut(A2
C) satisfies the Tits alternative: ifΓ < Aut(A2

C) is finitely
generated, then either Γ contains a finite-index solvable subgroup, or Γ contains a non-abelian free
group

(Proof uses ping-pong by considering action on tree coming from Bass–Serre theory, since we do
have a free product with amalgamation)

Question: What about the Tits alternative for Aut(Amk ), m ≥ 3?

Note that such a result will have, as corollaries, the Tits alternative for Out(Fn) (still an open
question) and for MCG(Σg) (known to be true.)

0.3 Degree growth

Proposition 0.8 (Exercise). If h ∈ Aut(A2
k), then either n 7→ deg(hn) is bounded, or n 7→ deg(hn)

grows like λn for some integer λ > 1.

Example 0.9.

(
x1
x2

)
h7→
(

x2
x1 + x22

)
deg(hn) = 2n.

Question: what kinds of sequences can we get by looking at n 7→ deg(fn) for f ∈ Aut(Amk )?

Can we get intermediate growth? Polynomial growth (of arbitrarily large degree)?

Have examples of exponential, bounded, linear growth; in general more mysterious.

Can ask same question for f ∈ End(Amk ).
Example 0.10. m = 3: consider the surface xD defined by x21 +x22 +x23 = x1x2x3 +D where D ∈ k

(A representation variety of F2 in SL2 C, D is related to the trace of [a distinguished element / the
commutator of the generators].)

The equation is cubic; in any fixed variable, it is quadratic.

Consider the polynomial transformation x1
x2
x3

 σ37→

 x1
x2
x′3

 =

 x1
x2

x1x2 − x3

.

Affine space is foliated by such surfaces; σ3 is a polynomial map which preserves these foliations.

Can analogously define σ1, σ2; deg ((σ2 ◦ σ3)n)σn; deg ((σ1 ◦ σ2 ◦ σ3)n) ∼ λn where λ = 1+
√
5

2 .
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Not known if we can find unbounded sequences with sublinear growth. Some evidence to suggest
“no”:
Theorem 0.11 (C. Urech). Let h ∈ Aut(Amk ). If n 7→ deg(hn) is not bounded then

max
j=0,...,n

deg(hj) ≥ Cmn1/m

where Cm > 0 is a constant depending only on dimension m.

Proof. (1) Look at End≤d(Amk ), i.e. endomorphisms defined by formulas of degree d. This is a

k-vector space, of dimension m×dim(k≤d[x1, · · ·xm]) = m ·
(
m+d
m

)
∼ mm+1 (have a basis formed by

monomials of the form xi00 x
i1
1 · · ·ximm where i0 + . . . im = d.)

(2) Given h ∈ End(Am); assume linear relation among the iterates, e.g. h5 = h3−2h+ id. Compose
on the right with hn: get (in our example) h5+n = h3+n−2h1+n+hn; replacing any terms with degree

≥ 5, get h =
∑4
j=0 ajh

j where aj ∈ k. The degree is hence uniformly bounded by maxj=0,...,4 deg hj .

(3) Put step (1) and (2) together: Dh(n) = degj=0,...,n deg(hj). If n+1 ≥ m ·
(
m+Dh(n)

m

)
(“too many

iterates of small degree”), then have a linear relation among the iterates, and hence bounded degree

growth. Otherwise have growth of ∼ m ·
(
m+d
m

)
≤ (m+d)m

(m−1)! ∼ d
m.

0.4 Finite subgroups

Proposition 0.12. If G is a finite subgroup of Aut(A2
k), then

(1) G is conjugate to a subgroup of Aff2(k) or E

(2) If k has characteristic 0, then G is conjugate to a subgroup of GL2(k).

Can prove by looking at action on a tree, using Bass–Serre theory.

Now for the main content of lectures: to prove results about polynomial transformation groups by
changing field of definition. Start with finite fields or p-adics ...

0.4.1 Fixed-point theorem

Theorem 0.13. Let G be a subgroup of Aut(Amk ) such that

(i) G is a p-group, i.e. #G = pr for some r ≥ 1, p prime

(ii) char(k) 6= p, k algebraically closed.

Then G has a fixed point.

Consequences: if G fixes the origin 0, consider

Φ =
∑
g∈G

(Dg)−10 ◦ g ∈ End(Amk )

where the differential Dg ∈ GLm(k); (DΦ)0 = (#G) id ∈ GLm(k).

Φ ◦ h = (Dh)0 ◦ Φ for all h ∈ G.
Corollary 0.14. G 3 g 7→ (Dg)0 ∈ GLm(k) is injective.
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Theorem 0.15 (Minkowski, Abboud). Set Mink(m, `) = b ml−1c+b
m

l(l−1)c+· · ·+bml
j(l − 1)c+· · · ∈ Z

(a finite sum of integers.)

If G is a p-group in GLm(Q) (Minkowski) or Aut(AMQ ) (Abboud—combining ideas in proof of fixed-
point theorem above and of Minkowski), #G = pr where r ≤ Mink(m, p); this upper bound is
optimal.

Aside: character variety

Rep(F2,SL2 k) = SL2 k × SL2 k

Aut(F2) acts on this representation space by ϕ · ρ = ρ ◦ (ϕ−1).

χ(F2,SL2) = rep / conjugacy in SL2

Outer automorphisms of F2 act on χ

χ = A3
k: (x1, x2, x3) = (trA, trB, trAB).

Finite subgroups, continued

Theorem 0.16. 1. #G = pr, G ⊂ Aut(Amk ), p ∧ char(k) = 1 (char(k) = 0 or q, q 6= p)

k is algebraically closed, or k is finite.

=⇒ G has a fixed point in Amk

Proof. Assume k is finite: k = Fqs for some prime q 6= p and some s ≥ 1.

Every orbit of G in Amk has either 1 element (a fixed point) or a number of elements divisible by p
(by the orbit-stabilizer theorem) ... and p does not divide q.

Remark 0.17. Aut(Amk ), when m ≥ 2, is infinite-dimensional even if Am(k) may be finite (!)

e.g. always have

(
x1
x2

)
7→
(
x1 + xd2
x2

)
—some of these coincide as permutations of Amk for k

finite, but they are still different transformations (and stop coinciding when we change the field of
definition.)

2. k algebraically closed (e.g. k = C.) Equations for fixed points given by g(x) = x for all g ∈ G.
Writing this out more fully, for g = (g1, . . . , gm),

g1(x1, . . . , xm)− x1 = 0

...

gm(x1, . . . , xm)− xm = 0

If there is no fixed point, this system of equations has no solution.

Hilbert Nullstellensatz (“if there is no solution, there is a good reason why there is no solution”): ∃ polynomial
functions Qg,i ∈ k[x1, . . . , xm] for g ∈ G, 1 ≤ i ≤ m s.t.∑

g∈G
1≤i≤m

(gi − xi)Qg,i(x) = 1. (1)
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Let A ⊂ k be the algebra (over Z) generated by the coefficients in (1) and 1
p .

Theorem 0.18. Let A be a finitely-generated algebra over Z. Then A has a maximal ideal, and for
every maximal ideal m, the quotient field A/m is finite.

Reduce everything modulo a maximal ideal m.

Write ḡ = g with coefficients in A/m,

similarly Q̄g,i = Qg,i reduced modulo m.

(1) continues to hold modulo m, so Ḡ has no fixed point in Am(A/m), where A/m is a finite field.

But 1
p ∈ A so p 6= char(A/m). Here we get a contradiction with step 1.

0.5 Bell’s Theorem

0.5.1 Newton’s algorithm for interpolation

• µ(n) a sequence of (complex) numbers

• Look for P ∈ C[t] s.t. P (j) = µ(j) for 0 ≤ j ≤ d, degP = ds

• Introduce the difference operator ∆ defined by

(∆µ)(n) = µ(n+ 1)− µ(n)

(∆µ) = (µ(1) − µ(0), µ(2) − µ(1), . . . ); (∆2µ)(0) = µ(2) − 2µ(1) + µ(0); (∆3µ)(0) = µ(3) −
3µ(2) + 3µ(1)− µ(0), .., (∆jµ)(0) =

∑
l(−1)j−l

(
j
l

)
µ(l).

Theorem 0.19. The polynomial function P is equal to

P (t) =

d∑
j=0

(∆jµ)

(
t

j

)

where
(
t
j

)
= t(t−1)···(t−j+1)

j!

Sketch of proof. (1) The functions
(
t
j

)
(for 0 ≤ j ≤ d) form a basis of C[t] (C[t]≤d, resp.)

(2) ∆
(
t
j

)
=
(
t+1
j

)
−
(
t
j

)
=
(
t

j−1
)

(Pascal)

(3) Write P as a linear combination
∑
j Aj

(
t
j

)
. It remains to show Aj = (∆jµ)(0). Observe that

P (0) = A0 = µ(0) = (∆0µ)(0); by (2) A1 = (∆µ)(0), and so on.

0.5.2 p-adic numbers

• Z× 3 a = pr × a′ where a′ is not divisible by p (p ∧ a′ = 1)

|a|p := p−r.

• Suppose a = pra′, b = psb′, s ≥ r.

a+ b = pr(a′ + ps−rb′).

If s > r, then (a′ + ps−rb′) ∧ p = 1, =⇒ |a+ b|p = p−r.

If s = r, |a+ b|p ≤ p−r (with equality if (a′ + b′) ∧ p = 1.)
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|a+ b|p ≤ max(|a|p, |b|p), with equality if |a|p 6= |b|p (the ultrametric property).

• Extend | · |p to Q by |0|p = 0,
∣∣a
b

∣∣
p

=
|a|p
|b|p

• Qp is the completion of Q for this absolute value.

Get (Qp, | · |p) where | · |p : Qp → pZ ∪ {0}.

Example 0.20. p = 5, a = 137.

|a|5 = 1 ... but this is not so descriptive. Instead, write:

a = 2 + 135 = 2 + 2 · 5 + 53.

|2|5 = 1, |2 · 5|5 = 1
5 , |53|5 = 1

125 .

Zp ⊂ Qp is the closure (for the p-adic topology) of Z in Qp.
Exercise. • Every x ∈ Zp can be written in a unique way x =

∑+∞
k=0 akp

k with ak ∈ {0, 1, . . . , p−
1}

• Zp is the unit disk in Qp, i.e. it is {x ∈ Qp : |x|p = 1}.

It is the valuation ring (in particular, it is a ring—this is related to the ultrametric property.)

It contains a unique maximal ideal pZp = disk of radius 1
p , and Zp/pZp = Fp.

Let µ : Z → Zp be uniformly continuous (w.r.t. p-adic topology on both sides), i.e ∀r > 0, ∃s > 0
s.t if ps divides m− n, then |µ(m)− µ(n)|p ≤ p−r.

spacer
Theorem 0.21 (Mahler). The continuous extension µ̃ : Zp → Zp of µ (i.e. µ̃(n) = µ(n) for all
n ∈ Z) is given by the Newton algorithm:

µ̃(t) =

+∞∑
j=0

(∆jµ)(0)

(
t

j

)
.

0.5.3 The Tate algebra

• Zp[x1, . . . , xm] =: Zp[x] = polynomial functions with coefficients in Zp.

Given P =
∑
aIx

I ∈ Zp[x], define ‖P‖ = max(|aI |)p). This is a (multiplicative) norm.

• Zp〈x1, . . . , xm〉 = Zp〈x〉 is the completion of Zp[x] for this norm.

An element f ∈ Zp〈x〉 can be written as f =
∑
aIx

I where |aI |p → 0 as |I| → +∞.

If f ∈ Zp〈x〉 then f : (Zp)m → Zp.

0.5.4 Bell–Poonen

Theorem 0.22 (Bell). Assume p ≥ 3. Let f : Zmp → Zmp be given by x 7→ (f1(x), . . . , fm(x)) such
that

(1) f ∈ Zp〈x〉

(2) ‖fi − xi‖ ≤ 1
p

Then ∃Φ : Zp × Zmp → Zmp ((t, x) 7→ Φ(t, x)) such that
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(a) Φ is also given by Tate-analytic functions, in (m+ 1) variables

(b) Φ(n, x)) = fn(x) for all n ≥ 1

(c) Φ defines an action of (Zp,+) on Zmp , i.e Φ(t+ s, x) = Φ(t,Φ(s, x)).

(i.e. any such f [analytic, close to identity] is contained in an analytic “flow”, but with time measured by p-adics.)

Proof. Write f(x) = A0 +A1(x)+A2(x)+ . . . where A0 =


a0
a1
...
am

, A1(x) is the linear term, A2(x)

the degree-2 term, and so on.

e.g. if f

(
x1
x2

)
=

(
x2

x1 + x32 + x2 − 3

)
=

(
0
−3

)
+

(
x2

x1 + x2

)
+ 0 +

(
0
x32

)
.

For m = 1, f =
∑
akx

k where |ak|p ≤ 1 and |ak|p → 0.

Fixing z we have a sequence µ(n) = fn(z).

To interpolate a sequence (Newton, Mahler), (∆µ)(n) = fn+1(z)− fn(z) = fn ◦ f(z)− fn(z)

Want to do this simultaneously for all z in polydisk.

Introduce a new difference operator ∆f : for h : Zmp → Zp or Zmp , define ∆fh := h ◦ f − h. Define

Φ(t, x) =

+∞∑
j=0

(∆j
f id)(x)

(
t

j

)
= id +(f − id)t+ (f2 − 2f + id)

t(t− 1)

2
+ . . .

where id(x1, . . . , xm) = (x1, . . . , xm).

It suffices to show that this series converges, i.e. we want to prove that the formal power series
defines an element in (Zp〈t, x〉)m.

Recall ‖h‖ = maxI |aI |p where h =
∑
aIx

I .

f = id +R where all coefficients in R have | · |p ≤ 1
p .

If M(x1, . . . , xm) = xI = xi11 x
i2
2 · · ·ximm , then M ◦ f is M + something of norm < 1

p .

∆fM is something of norm ≤ 1
p

...

‖∆j
fM‖ ≤ p−j .

Using the ultrametric inequality, ‖|∆j
fh‖ ≤ p−j

By density of polynomials in Zp〈x〉, ‖∆j
fh‖ ≤ p−j for all h ∈ Zp〈x〉.

Consequence: ‖∆j
f id ‖ ≤ p−j .

Next need to control
(
t
j

)
= t(t−1)···(t−j+1)

j! = ∈Z[t]
j!

For all P ∈ Z[t], ‖P‖ ≤ 1. Need to control the p-adic absolute value of j!

νp(j!) = νp(1× 2×× · · · × j) = b jpc+ b jp2 c+ · · · =
∑+∞
k=1b

j
pk
c ≤

∑+∞
k=1

j
pk

= j
p

1
1−1/p = j

p−1 .
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Hence |j!|p ≥ p−j/p−1 =
(
p−

1
p−1

)j
.

If p ≥ 3, win! (If p = 2, result still true if e.g. have reduction mod p2.)

Φ is a well-defined map in Zp〈t, x〉; by construction, if n ∈ Z≥0, then Φ(n, x) = fn(x), since

Φ(n, x) = (id +∆f)n(id) =
∑

∆j
f

(
n

j

)
.

Last step: want to show
Φ(s+ t, x) = Φ(s,Φ(t, x))

for all s, t ∈ Zp.

If (s, t) ∈ (n,m) ∈ Z+ × Z+, this is just fn+m = fn ◦ fm. Now use that Φ is continuous, and
Z≥0 = Zp.

Remarks:

(1) Φ : (Zp,+) y Zmp ; inverse of Φ(1, x) = f(x) is Φ(−1, x), so f(x) is invertible

=⇒ f is in fact a (Tate-)analytic diffeomorphism of Zmp .

(2) Given g : Zmp → Zmp ∈ (Zp〈x〉)m, consider the distance on Zmp given by d(x, y) = maxi=1,...,m |xi−
yi|p.

The ultrametric property implies that g is 1-Lipschitz wrt this distance.

=⇒ f is in fact an analytic isometry (1-Lipschitz with 1-Lipschitz inverse) of Zmp .

=⇒ fZ ⊂ Φ(Zp, . . . ) ⊂ Isom(Zmp ).

(3) (say m = 1): (recall Zp = {x ∈ Qp : |x|p ≤ 1}; say p = 5)

[[ picture placeholder ]]

... Zp is a Cantor set; disks of radius 1
pj correspond to points in Z/pjZ.

Action of f on polydisks of radius p−j ↔ action of f on (Z/pjZ)m after reduction of coefficients.

Remark 0.23. Write f = A0 +A1(x) +A2(x) + · · ·+Aj(x) + . . .

Assumption was ‖A0‖ ≤ 1
p , ‖Aj‖ 1p for j ≥ 2, ‖A1 − id ‖p ≤ 1

p . These is not a strong assumption, by

the following reduction/s:

Start with f : Zmp → Zmp analytic which is invertible.

Iterate f and reduce mod pZp.

We get a transformation of (Z/pZ)m, which is a finite set. =⇒ ∃` ≥ 1 s.t .f `(0) = 0 mod pZp,
i.e. up to iteration [and ` is uniform given p and m / independent of f ], first constraint is always
satisfied (A0(f `) = 0 mod p)

Assume A0 = 0 mod p; look at A1 = (Df)0 mod (p), ∈ GLm(Z/pZ).

=⇒ ∃`′ s.t. f `
′
(0) = 0 and

(
Df `

′
)
0

= id mod p (again, last constraint always satisfied up to

uniform iteration.)
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Now assume that f(x) = A0 + A1(x) +
∑
j≥2Aj(x) s.t. A0 = 0 mod p, A1 − id = 0 mod p,

Aj ∈ Zp[x] homogeneous of degree j.

Change f into h ◦ f ◦ h−1 where h(x) = 1
p (x1, . . . , xm).

h−1(x) = (px1, . . . , pxm).

h ◦ f ◦ h−1(x) = 1
pA0 + A1(x) + pA2(x) + p2A3(x) + . . . , so all coefficients in quadratic and higher

terms are in pZp (up to conjugation.)

Remaining problem is in conjugated constant term 1
pA0, but this is okay as long as A0 = 0( mod p2)

(which, again, we can assume by passing to a uniform iterate.)

0.6 Skolem–Mahler–Lech, Bell–Ghioca–Tucker

Consider any linear recurrence, e.g.

un+2 = un+1 − πun + un−1

with starting point (u0, u1, u2).

Consider Z(u) = {n : un = 0}.

Theorem 0.24 (Skolem–Mahler–Lech). This set is a finite union of arithmetic progressions, i.e.
∃k ∃ri, si for 1 ≤ i ≤ k s.t.

Z(u) =

k⋃
i=1

{rin+ si : n ∈ Z+}

(ri may be zero, in which case that arithmetic progression reduces to a single point.)

In fact, using the Bell–Poonen theorem, there is a non-linear (polynomial) version of this:
Theorem 0.25 (Bell–Ghioca–Tucker). Given f ∈ Aut(AmC ), x ∈ AmC , W ⊂ Am an algebraic
subvariety.

Let Z = {n ∈ Z : fn(z) ∈W}. Then Z is a finite union of arithmetic progressions.

Proof. Step 1. Assume [instead] f is defined by polynomial functions in Zp[x], z ∈ Am(Zp), W
defined by equations Fi(x) = 0 with Fi ∈ Zp[x]. Conjugating by translation 0 7→ z, we may assume
z = 0.

F maps points in polydisk to points in polydisk, so orbit of 0 remains in polydisk. Look at when
orbit is contained in W∩polydisk.

Change f into h ◦ f ` ◦ h−1 (where h is multiplication by 1
p as above) to assume that f = id mod p.

W ′ = W ∪ f(W ) ∪ · · · ∪ f `−1(W ).

Let Z ′ = {n : gn(0) ∈W ′} where g = f `.

Bell–Poonen: g(x) = Φ(1, x).

Case 1: Z ′ finite: done.

Case 2: Z ′ infinite: let Gi be an equation defining W ′.

t 7→ Gi(Φ(t, 0)) has infinitely many zeros in Zp. Principle of isolated zeroes =⇒ Gi ◦ Φ(t, 0) ≡ 0.

True for each Gi; =⇒ for all t ∈ Zp: Φ(t, 0) ⊂W ′
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=⇒ for all n: gn(0) ⊂W ′.

Step 2. From C to Zp.

Recall f−1, f ∈ Aut(AmC ), z ∈ Am(C); W = {F1 = 0, . . . , Fk = 0}.

Get finite set of coefficients S ⊂ C; problem is defined over field Q(S), S.

Lemma 0.26. Let K be a finitely-generated extension of Q, e.g. Q(
√

2, π), S be a finite subset of
K.

Then ∃ an embedding ι : K ↪→ Qp for some p s.t. |ι(s)|p = 1 for every s ∈ S \ {0}.

Idea of proof. Two main ingredients: say K = Q(π)(
√

2).

1. Q(t) ↪→ Qp (map t to some transcendental; this is okay because Qp is not countable.)

2. for algebraic extensions: say P [t] ∈ Z[t] irreducible, e.g. t2−2. 1st step: find p s.t. P (t) has a root

in Z/pZ. There are infinitely many such p; if not ∃p1, . . . , pk s.t. P (n) = p
α1(n)
1 · · · pαk(n)

k ∼ ndegP

for all n ∈ Z. 2nd step: Hensel lemma =⇒ ∃p s.t. P has a root in Zp.

... and now we have reduced the problem to one in Zp (i.e. see Step 1.)

0.7 Malcev and Selberg

Theorem 0.27. Let Γ be a finitely-generated subgroup of GLm(C) or (Bass–Lubotzsky) Aut(AmC ).
Then

(1) (Malcev) Γ is residually finite, i.e. ∀γ ∈ Γ \ {id}, ∃ a homomorphism from Γ to a finite group
such that γ is sent to a non-identity element.

(2) (Selberg) Γ contains a finite-index torsion-free subgroup.

Statement is more general—can change field, and replace Amk with an algebraic variety.

Example 0.28. Γ = SLm Z.

Pick γ ∈ Γ \ {id}.

∃aij a coefficient of the matrix [aij ] such that aij 6= δij (the Kronecker delta.)

Choose p� 1 such that aij − δij 6= 0 mod [p]

Reduce mod [p]: get morphism
SLm(Z)→ SLm(Z/pZ)

to a finite group with γ 7→ γ̄ 6= id.

... will do similar proof in general, in non-linear context.

Proof of Bass–Lubotzky theorem. Let Γ < Aut(AmC ), S be a finite set of generators.

Let CS be the set of coefficients in C in the formulas defining the elements of S.

∃ an embedding of Q(CS)
ι
↪→ Qp for some p ≥ 3 such that ι(CS) ⊂ Zp and |ι(s)|p = 1 for all

s ∈ CS \ {0}.

Now Γ ⊂ Aut(AmZp
).

(1) [Malcev] The action of Γ on balls of (Zp)m of radius p−j is the same as looking at Γ y (Z/pjZ)m.
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Take γ ∈ Γ \ {id}. γ must map some ball of small radius to a different ball, hence acts non-trivially
on (Z/pjZ)m for some j � 1 (related to the radius of the ball.)

(i.e. if γ = (f1, . . . , fm) with f` ∈ Zp[x] is not the identity, there is some coefficient which explains
this; this remains true under reduction mod some pj , and sowe get γ 7→ γ̄ ∈ Aut(AmZ/pjZ) \ {id}.)

Note Aut(AmZ/pjZ) is not finite. But we can look at these as permutations on the finite set AmZ/pjZ,
and that is a finite group.

(2) [Selberg] Recall we now have Γ < Aut(AmZp
); recall from above that

Fact 1. ∃ a finite-index subgroup Γ0 of Γ (with index depending only on m and p) s.t. for every
f ∈ Γ0, p−1◦f ◦(px) is contained in a p-adic analytic flow Φ(t, x), i.e. ∀n ∈ Z, Φ(n, x) = p−1fn(px).

Want to show that Γ0 is torsion-free. Assume f ∈ Γ0 is a torsion element; wewill show that f = id.

f torsion =⇒ fk = id for some k ≥ 1, and so p−1fkn(px) = id for all m, =⇒ Φ(t, x) satisfies
Φ(kn, x)− id = 0 for all n ∈ Z. By the principle of isolated zeros, Φ(t, x) = id for every t ∈ Zp. In
particular, with t = 0, f = id.

Exercise (Minkowski). Γ0 = ker(SLm Z→ SLm Z/3Z) is torsion-free.

(Prove this directly, and see how it fits into the framework / proof above.)

0.8 Zimmer problem

Say Γ = SLnR with n ≥ 3, Γ a lattice in G, finite index in SLn(Z).

Γ y Pn−1(R). Does Γ act faithfully by diffeomorphisms or homeomorphisms on some compact
manifold of dimension < n− 1?

... we can ask the same question for groups of polynomial automorphisms.

Theorem 0.29 (Cantat, Junyi Xie). Assume Γ not cocompact. If Γ embeds into Aut(AmC ), then
m ≥ n.

Strategy of proof. Γ, being a lattice, is finitely-generated. Consider embedding of field in a p-adic
field as above. For each group element, can apply Bell–Poonen theorem, sothat it is contained in an
analytic flow of maps on the Zp-polydisk.

(New ingredient) Can put all of these flows together to get an action of a p-adic Lie group which
is locally like the Lie group G (a non-local version of Bell–Poonen); then do (p-adic) differential
geometry. (This is specific to Γ being a lattice in a simple Lie group, and Γ being not co-compact;
uses congruence subgroups; for SLn Z subgroups, consider unipotents.)

0.9 Birational transformations in dimension 2 and hyperbolic space of
infinite dimension

H∞ = hyperbolic space of infinite dimension.

Consider A2
C, group of birational transformations Bir(A2

C).

An element f ∈ Bir(A2
C)is given by formulas f = (f1(x1, x2), f2(x1, x2)) where fi = Pi(x1,x2)

Qi(x1,x2)
∈

k(x1, x2).

12



Example 0.30. Given GL2(Z) 3 B =

(
a b
c d

)
, (x1, x2) 7→ (xa1x

b
2, x

c
1x
d
2) is in Bir(A2

C).

If B = − id, (x1, x2) 7→
(

1
x1
, 1
x2

)
is its own inverse.

Note e.g. (x1, x2) 7→
(
x1

x2
, x2

)
is not well-defined everywhere.

σ(x1, x2) =
(

1
x1
, 1
x2

)
maps x1 = 0 and x2 = 0 points to line at infinity; better to compactify affine

space by adding a line at infinity, get P2
C = {[x1 : x2 : x3]}. When x3 = 1, get A2

C; when x3 = 0 get
line at infinity.

σ[x1 : x2 : 1] =
[

1
x1
, 1
x2

: 1
]
;

σ[x1 : x2 : x3] = [x3x2 : x1x3 : x1x2].

... better to look at transformations of P2
C given by f [x1 : x2 : x3] = [f1 : f2 : f3] where f1, f2, f3

are homogeneous polynomials of the same degree without common factors, with inverse of the same
form.

... to find an inverse?

σ ◦ σ = [x21x2x3 : x1x
2
2x3 : x1x2x

2
3] = [x1 : x2 : x3]

(when x1x2x3 6= 0.)

Geometrically: x2-axis mapped to infinity, similarly with x1-axis

When x1 = 0: σ = [x2x3 : 0 : 0]; x1 = 0 line blown down to a point [1 : 0 : 0]; similarly with other
axes; σ is an involution, those points are blown up to lines.

Blowing up points: take a point xof a smooth surface X; construct a new surface X ′ in which x
is replaced by a curve P1 = P(TxX) (the set of tangent directions to X at the point x.)

Doing this for σ: we replace each of the three vertices [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]: on this blow-up
surface, with a hexagon, σ is well-defined.

Main difference between polynomial automorphisms, birational maps: have points of indeterminacy;
can resolve this by doing blow-ups.

...

A mapping class group acts on curves on surfaces, hence on curve complex, get interesting re-
sults.

Want to do analogous thing for Bir(A2
C) acting on curves in P2

C. Problem: action not well-defined,
curves can be mapped to points.

Note: here we are C world, so “curve” = Riemann surface (dimC = 2, dimR = 1.)

P2(C) ⊃ C a complex (algebraic) curve. It suffices to look at a homology class of C.

[C] ∈ H2(P2(C)) = Ze0 where e0 is the homology class of a(ny) projective line.

Line at infinity is a P1(C) = Ĉ = C̄ = S2.

[C] = d e0 where d is the degree of the equation defining C, = number of intersection points between
C and a generic line.

Bir(P2(C)) y H2(P2(C);Z)?
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Algebraic geometry viewpoint: given a line ` = {ax1+bx2+cx3 = 0}, Bir(P2(C)) 3 f = [f1 : f2 : f3],
f−1(`) = {af1 + bf2 + cf3 = 0}, so action should be multplication by d ... but this is not an
automorphism of Z.

In our example σ, preimage of a generic line is a conic going through [1 : 0 : 0], [0 : 1 : 0], [0 : 0 :
1].

Instead: blow things up so that our maps are regular ... this gives new surfaces, and increases H2. Now do this

everywhere at once.

Trick: blowup all (possible) points and take the limit of H2(Xm;Z) (iven π1 : X1 → X0 = P2, get
H2(X1) ⊃ π∗1H2(P2).

H2(X1;Z) = Ze0 ⊕ Ze1 where e1 is (co)homology class of the blow-up curve. e20 = 1, e0 e1 = 0,
e21 = −1.

H2(X2;Z) = Ze0 ⊕ Ze1 ⊕ Ze2 with e2 orthogonal to previous ei, e
2
2 = −1.

In the limit, get Ze0 ⊕
⊕

j Zej with ei pairwise orthogonal, e20 = 1, e2j = −1 for j > 0

... a (discrete) Minkowski space of infinite dimension!

HZ
∞ = {u ∈ Ze0 ⊕

⊕
Zej : u · u = +1, u · e0 ≥ 0}.

Tensoring with R,

H∞ = {u ∈ Re0 ⊕
⊕

Rej : u · u = +1, u · e0 ≥ 0}.

Metric: for u, v ∈ H∞, cosh d(u, v) = uv̇.

Lemma 0.31. Bir(P2
C) embeds as a group of isometries of H∞.

(Action is natural action on classes of curves with self-intersection 1.)
Theorem 0.32 (Gizatullin). Let f be an element of Bir(P2

C). Denote by f∗ the corresponding
isometry of H∞. There are only three possibilities:

1. f∗ is elliptic, iff ∃ a birational change-of-coordinates ϕ : P2
C
∼
99K X s.t. ϕ◦f ◦ϕ−1 is contained

in a Lie group acting algebraically on X; deg(fm) bounded.

2. f∗ is parabolic:

either deg(fn) ∼ n and f preserves a pencil of P1’s

or deg(fn) ∼ n2 and f preserves a pencil of elliptic curves

3. f∗ is loxodromic, iff deg(fn) ∼ λn with log λ the translation length of f∗.

+ ping-pong, + more structure theory =⇒ Tits alternative

... any subgroup of Bir(P2
C) with (T) is conjugate to a subgroup of PGL2.

... not known if subgroups of Bir(P2
C) are residually finite (second step of Malcev argument breaks

down—do not have actions on finite sets due to indeterminacy points, although we do almost—get
that these groups are sofic.)
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